
Abstract Dominant genetic markers such as AFLPs and
RAPDs are usually analyzed based on the presence or
absence of a band on an electrophoretic gel. This type of
analysis does not allow a distinction among dominant
homozygotes and heterozygotes. Such a distinction is
possible based on the quantitative measurement of band
intensities. In the present paper, we consider the problem
of analyzing dominant markers based on band-intensity
data. The basic step for mapping a marker is to assess its
recombination frequency with other markers. Ordering
markers on a map can then be done using a number of
standard procedures. For this reason estimation of the re-
combination frequency is the main focus of the present
paper. The method is demonstrated for the case of an F2
population. By simulation we investigate its accuracy
and compare it to the standard estimation based on domi-
nant scoring for band presence/absence. There are a
number of potential applications. For example, the map
may be used to locate quantitative trait loci (QTLs), ap-
plying standard procedures modified to account for un-
certainty of the marker genotype. Moreover, map infor-
mation can be used to determine the most likely geno-
type at a marker, given its band intensity and the band
intensities at flanking markers.

Keywords QTL analysis · AFLP · Genotyping · Bayes 
theorem · Two-point analysis · Recombination fraction · 
Linkage mapping

Introduction

Consider an F2-population derived from a single parental
cross. We will look at the inheritance of two linked loci.
Let M1 and m1 be the alleles at the first locus, while the

alleles at the second locus are M2 and m2. Our objective
is to estimate the recombination fraction between the two
marker loci, which is denoted here as ρ. The allele Mk
(k=1, 2) produces a band on an electrophoretic gel. It is
dominant with respect to the null allele mk. Thus, ab-
sence of a band is detected only for the genotype mkmk.
While genotypes MkMk and Mkmk both produce a band,
the band intensity is expected to be larger for the former.
Thus, with a quantitative measurement of band intensi-
ties, MkMk and Mkmk can be distinguished, provided
measurement errors are not too large.

The purpose of the present paper is to demonstrate
how the recombination fraction can be estimated if band
intensities are available. We will use a normal mixture
model for this purpose and estimate parameters by the
expectation-maximization (EM) algorithm (McLachlan
and Krishnan 1997). The method is exemplified using a
real data set. We discuss potential applications, i.e. con-
struction of marker maps, quantitative trait loci (QTLs)
mapping, and codominant scoring of AFLP markers.

Materials and methods

Model

Assume that for the r-th plant (r=1, ..., n), we have a quantitative
measurement at each marker position k (k=1, 2). Denote this mea-
surement as ykr. Based on ykr we want to estimate the recombi-
nation fraction ρ between the two markers. An F1-individual
M1M2/m1m2 produces nine distinguishable genotypes (Tab. 2). Let
gk (k=1, 2) be a random variable with gk=1 for marker genotype
mkmk, gk=2 for Mkmk, and gk=3 for MkMk. Denote the joint proba-
bility that g1=i and g2=j (i,j=1, 2, 3) as

πij(ρ)=P(g1=i, g2=j). (1)

The probability πij depends on ρ, the recombination frequency be-
tween the marker loci, as shown in Table 1 (Ott 1991, 1993;
Weber and Wricke 1994). Measurements of band intensitities for
marker genotypes MkMk and Mkmk will be subject to measurement
errors. Moreover, any device for measuring band intensity is likely
to give a non-zero measurement for mkmk individuals, which may
be regarded as background noise (Piepho and Koch 2000). This
measurement, too, will show some measurement error. Thus, con-
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terminology common with the EM algorithm, we may say that
xr=(yr, zr) is the complete data vector and yr is the incomplete data
vector. In the sequel we describe the technical details of the algo-
rithm. Readers not interested in these technicalities may proceed
directly to the example.

The likelihood for the complete data is

(6)

The conditional expectation of the complete-data log likelihood,
given the observed data yr, using the current estimates for the pa-
rameters θ(h), may be expressed as

(7)

Since Q(θ;θ (h)) is linear in zijr, Q(θ;θ (h)) is computed by replacing
zijr by its expectation, given yr, in the complete-data log-likelihood
evaluated at θ;θ(h); i.e. zijr is replaced by

(8)

The M-step maximizes Q[θ;θ (h)] with respect to the parameters,
while the E-step updates w(h)

ijr based on the current parameter esti-
mates. In the M-step, we can exploit the fact that ρ(h) and 
[µ(h)

ks , σk
2(h)] are disjoint in Q(θ;θ (h)). The estimating equations for

[µ(h)
ks , σk

2(h)] have explicit solutions, while the equation for ρ(h) is a
third-degree polynomial, which may be solved numerically, e.g.
using the POLYROOT function of SAS/IML, or by explicit for-
mulae (Abramowitz and Stegun 1972). The EM-algorithm pro-
ceeds as follows:

(1) Initial step: choose starting values for θ.
(2) E-step: update the weights w(h)

ijr .
(3) M-Step: estimates for [µ(h)

ks ,σk
2(h)] (k=1, 2; s=1, 2, 3) are updat-

ed as follows:

(9)

Update ρ(h) by the non-complex root of

(10)

where
















ditionally on the marker genotype s (s=1, .., 3 for marker geno-
types mm, Mm and MM, respectively), band intensities at the k-th
marker are assumed to follow a normal distribution with a mean
µks and a variance σ2

ks. Let

φ(ykr|µks, σ2
ks) (2)

be the normal density for ykr, the quantitative measurement on the
k-th marker for the r-th plant (r=1, .., n; for simplicity, no distinc-
tion is made in notation between a random variable and its real-
ized values). The density has a mean µks and a variance σ2

ks. Condi-
tionally on the marker genotype, band intensities at different
markers will be assumed to be independent. This is a convenient,
though approximate, assumption, since bands on the same lane are
expected to show some correlation. If lanes are corrected based on
information from monomorphic bands, the independence assump-
tion is often tenable (Piepho and Koch 2000). There are a number
of software packages that use this type of correction, e.g. the
AFLP-Quantar package by KeyGene (www.keygene.com). As-
suming independence, the marginal distribution of yr=(y1r, y2r), the
observation vector for the r-th plant, is a mixture of nine bivariate
normal distributions:

(3)

where θ=[ρ, (µks), (σ2
ks)] (markers k=1, 2; marker genotypes s=1,

..., 3). The model can be simplified by assuming variance homoge-
neity at different levels, e.g.,

σ2
ks=σ2

k, or (4)

σ2
ks=σ2. (5)

In a model with a single marker, assuming variance homogeneity
at the marker (as in equation 4) has been found to be appropriate
in many cases and to yield more stable results than a model with a
separate variance component for each marker genotype (Piepho
and Koch 2000). Assuming variance homogeneity across markers
(equation 5) may be unrealistic though, since the type and quantity
of product measured at a band position varies among markers. For
these reasons, we will henceforth use model (4).

Two-point analysis by the EM algorithm

The method

Let zijr be a random variable with zijr=1 if g1=i and g2=j and zijr=0
otherwise. zr=(z11r, ..., z33r) follows a multinomial distribution with
a constant 1 and cell probabilities of πij(ρ). The problem in prac-
tice is that zr is not observed. Estimation would be straightforward
if both yr and zr were fully observed. This is exploited by the ex-
pectation-maxmization (EM) algorithm (McLachlan and Krishnan
1997). Essentially, the EM algorithm for fitting (3) iterates be-
tween two steps, one that imputes the missing data (zr) and one
that estimates the parameters from the completed data. Using the

Table 1 Marker genotypes in
the F2 derived from the cross
M1M1M2M2×m1m1m2m2, where
the two loci have the recombi-
nation fraction ρ

Genotype i j πij(ρ) Sij(ρ)a Coefficient of the polynomial 
obtained by multiplying 

Marker 1 Marker 2 Sij(ρ) with ρ(1–ρ)(1–2ρ+2ρ2)

ρ0 ρ1 ρ2 ρ3

M1M1 M2M2 3 3 (1–ρ)2/4 −2/(1–ρ) 0 –2 4 –4
M1M1 M2m2 3 2 ρ(1–ρ)/2 (1–2ρ)/[ρ(1–ρ)] 1 –4 6 –4
M1M1 m2m2 3 1 ρ2/4 2/ρ 2 –6 8 –4
M1m1 M2M2 2 3 ρ(1–ρ)/2 (1–2ρ)/[ρ(1–ρ)] 1 –4 6 –4
M1m1 M2m2 2 2 (1–2ρ+2ρ2)/2 2(2ρ–1)/(1–2ρ+2ρ2) 0 –2 6 –4
M1m1 m2m2 2 1 ρ(1–ρ)/2 (1–2ρ)/[ρ(1–ρ)] 1 –4 6 –4
m1m1 M2M2 1 3 ρ2/4 2/ρ 2 –6 8 –4
m1m1 M2m2 1 2 ρ(1–ρ)/2 (1 − 2ρ)/[ρ(1–ρ)] 1 –4 6 –4
m1m1 m2m2 1 1 (1–ρ)2/4 –2/(1–ρ) 0 –2 4 –4
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that maximizes Q(θ;θ (h)). In our experience, this equation has ex-
clusively had one non-complex root and one conjugate pair of
complex roots. If the solution is larger than 0.5, set ρ(h+1)=0.5. If
the solution is smaller than 0, set ρ(h+1)=0.0.

Iterate steps (2) and (3) until convergence.

Results and discussion

Example

To exemplify the method, we use band intensity data 
for two linked AFLP markers from a sugar beet data set
described in detail by Piepho and Koch (2000). Due to
the measurement device, band intensities ranged from
about 0 to about 2. The data are displayed in Table 2.
Application of the EM algorithm to these data yields 
the following parameter estimates: µ̂11=0.369, µ̂12=0.770,
µ̂13=1.012, σ̂1=0.0983, µ̂21=0.271, µ̂22=0.898, µ̂23=1.128,
σ̂2=0.0780 and ρ̂=0.191. Thus, the two markers were on-
ly loosely linked.

Simulation experiment

We will compare the estimator for quantitative marker
data (quantitative method) with the estimator for band
presence/absence data (qualitative method). Under the
assumed mixture model, band intensities follow a normal
distribution and the normal components show some de-
gree of overlap. Thus, even if we assume that band inten-
sity is assessed correctly by eye, the classification of a
band as present or absent will be subject to misclassifica-
tion error. The error increases with increasing variance
of the mixing components and with decreasing distance
between means. To mimic the assessment of band pres-
ence or absence in practice, we will assume that the rater
has full knowledge of the underlying distribution and de-
termines the genotype using the posterior genotype prob-
abilities derived from the Bayes theorem as described in
Piepho and Koch (2000). According to this decision rule,
a band at the first marker will be rated as absent if

(11)

This threshold corresponds the solution for y1r in

(12)

i.e. the point of intersection for the two normal distribu-
tions of m1m1 and m1M1, weighted by the marginal a pri-
ori probabilities of these two genotypes. The equivalent
rule for the second marker is

(13)

The decision rule is illustrated in Fig. 1, assuming that
the rating of band absence/presence following this deci-
sion rule is optimistic. In reality, the rater will not have
full knowledge of the true distribution, and the misclassi-
fication rate will be larger than under the Bayes rule in
(12) and (13). Thus, our comparison favors the qualita-
tive method. Moreover, markers were assumed to be in
coupling phase, which is expected to be a much more fa-
vorable setting for the qualitative method than repulsion
linkage (Liu et al. 1998, p 193). Under the qualitative
method, the recombination fraction will be estimated us-

Table 2 Band intensity values
for two markers from the sugar
beet experiment described in
Piepho and Koch (2000). The
46 individuals appear in the
same order for both markers

Marker 1
0.504 1.022 1.001 0.250 0.730 0.520 0.840 0.442 1.083 1.075
1.118 0.910 0.334 1.028 0.722 0.622 0.798 0.554 0.340 0.937
0.395 0.973 0.811 0.719 1.019 0.869 0.640 0.441 0.943 0.795
0.747 0.470 0.744 0.878 0.882 0.707 0.862 1.238 0.291 0.278
0.255 0.323 0.262 0.801 0.870 0.350

Marker 2
0.534 1.182 1.041 0.260 0.290 0.270 1.050 0.272 1.183 1.155
1.008 0.900 1.104 1.168 0.952 0.222 0.948 0.894 0.810 1.087
0.225 1.163 1.031 0.839 1.089 0.729 0.840 0.141 1.123 0.935
0.887 1.150 0.904 1.158 1.142 0.247 0.892 1.238 0.951 0.918
0.795 0.923 0.822 1.031 0.840 0.250

Fig. 1 Illustration of the decision rule for the dominant scoring
procedure used in simulation
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ing standard procedures (Weir 1998, p 236). This as-
sumes that all individuals are classified correctly, which
is not the case under the assumed model. Thus, some bi-
as and variance inflation is expected compared to a situa-
tion without a misclassification error.

To compare the qualitative and quantitative methods,
we simulated 1,000 data sets and computed the mean
squared error (MSE), the root mean squared error
(RMSE), the standard deviation (SD), and the bias 
(BIAS) for both estimators of ρ. In simulations, the fol-
lowing parameters were varied: sample size, n (50, 200,
500), means (µ11, µ12, µ13), [(0.5, 1.0, 1.5), (0.5, 1.2, 1.5),
(0.5, 1.35, 1.5), (0.5, 1.45, 1.5)], standard deviations, σ1
(0.05, 0.10), and recombination fraction, ρ (0.01, 0.05,
0.20). The same means and variances were assumed for
both markers. The choices for means and variances are
based on experience with AFLP band-intensity data 
(Piepho and Koch 2000).

The results are reported in Tables 3, 4 and 5.
Throughout, the quantitative method has the more favor-
able values for MSE, RMSE, SD and BIAS, or the two
methods are comparable. The better-separated are the
normal components for Mkmk and MkMk, i.e. the farther
apart the means and the smaller the variance, the higher
the gain. When the means for Mkmk and MkMk are very
close, the methods are virtually identical in performance.
Thus, using band intensity data promises to often pro-
vide a gain in accuracy compared to presence/absence
data. In the worst case, the gain is small or negligible. It
appears that nothing can be lost by trying to exploit
quantitative information.

Some fields of application

In what follows, I will consider potential fields of appli-
cation for the proposed method, i.e. map construction,
QTL mapping and genotyping of AFLP markers.

Map construction

The simulations have shown that it is worthwhile to ex-
ploit band intensity information. The suggested method
allows a co-dominant analysis, which accounts for un-
certainty regarding the marker genotype in case of mea-
surement errors. Such errors are quite common in prac-
tice (Piepho and Koch 2000). Of course, co-dominant
markers, which allow an unequivocal distinction among
heterozygotes and dominant homozygotes, are preferable
due to higher information content; but dominant markers
such as AFLPs are often used for economical reasons.
Co-dominant scoring of such markers based on intensity
data allows more information to be extracted than an
analysis based on the presence or absence of a band.
Once all pairwise recombination fractions have been es-
timated for a set of markers, one can use one of a num-
ber of standard methods for genetic map-construction
(Weir 1996, p 241; Liu 1998), including the least-squares
approach suggested by Jensen and Jørgensen (1975; and
see Stam 1993). Also, the method of Lander and Green
(1987) and Lander et al. (1987), which does not utilize
pairwise recombination estimates, is formulated general-
ly enough to allow quantitative data to be handled. Since
their method is markedly different from the present two-
point approach, I will not elaborate this option here.

Table 3 Mean square error
(MSE), root mean square error
(RMSE), standard deviation
(SD) and bias (BIAS) for esti-
mates of the recombination
fraction based on presence/
absence data (qualitative) and
on band intensity data (quanti-
tative). Results based on 1,000
simulations for each setting.
n=50

Parametersa MSE×10,000 RMSE×100 SD×100 BIAS×100

µ11 µ12 µ13 σ1 ρ Qual. Quant. Qual. Quant. Qual. Quant. Qual. Quant.

0.5 1.0 1.5 0.05 0.01 2.30 1.02 1.52 1.01 1.51 1.01 0.083 0.045
0.05 10.07 5.33 3.17 2.31 3.17 2.31 0.058 0.107
0.20 45.34 22.09 6.73 4.70 6.73 4.69 0.290 0.295

0.10 0.01 4.52 1.05 2.13 1.03 1.92 1.03 0.907 –0.004
0.05 12.26 5.54 3.50 2.35 3.41 2.35 0.790 –0.115
0.20 50.39 22.95 7.10 4.79 7.04 4.79 0.911 0.188

0.5 1.2 1.5 0.05 0.01 2.10 0.98 1.45 0.99 1.45 0.99 –0.010 0.003
0.05 9.89 4.85 3.14 2.20 3.14 2.20 –0.108 –0.038
0.20 41.30 20.97 6.43 4.58 6.42 4.58 –0.170 –0.003

0.10 0.01 2.11 1.53 1.45 1.24 1.45 1.23 0.070 –0.028
0.05 10.47 7.23 3.24 2.69 3.23 2.69 0.188 0.013
0.20 45.94 29.42 6.78 5.42 6.77 5.42 0.270 –0.029

0.5 1.35 1.5 0.05 0.01 2.06 1.63 1.44 1.27 1.44 1.27 0.027 –0.022
0.05 9.90 7.51 3.15 2.74 3.14 2.74 0.104 –0.025
0.20 44.45 27.03 6.67 5.20 6.66 5.20 0.223 –0.023

0.10 0.01 1.88 1.85 1.37 1.36 1.37 1.36 –0.014 –0.029
0.05 9.53 9.32 3.08 3.05 3.08 3.05 0.133 0.068
0.20 42.09 38.79 6.49 6.23 6.49 6.22 –0.143 –0.350

0.5 1.45 1.5 0.05 0.01 2.17 2.17 1.47 1.47 1.47 1.47 0.061 0.055
0.05 9.83 9.64 3.14 3.11 3.13 3.11 0.084 0.021
0.20 45.90 42.55 6.77 6.52 6.76 6.52 0.469 0.188

0.10 0.01 1.97 1.94 1.40 1.39 1.40 1.39 –0.055 –0.060
0.05 10.89 10.97 3.30 3.31 3.30 3.31 0.065 0.033
0.20 43.70 40.88 6.61 6.39 6.61 6.39 0.227 –0.110

a Means and variances are the
same for both markers
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Whatever method is used for map construction, the re-
sulting map will be more accurate with a quantitative
analysis than with the analogous qualitative analysis,
since the recombination fractions are estimated more ac-
curately with the former.

Mapping QTLs

Genetic maps are the basis for QTL mapping. Maps
based on quantitative markers can be used for QTL map-
ping with some modification of standard procedures. The
key quantities for QTL mapping procedures such as in-
terval mapping (IM; Lander and Bostein 1989) or com-

Table 4 Mean square error
(MSE), root mean square error
(RMSE), standard deviation
(SD) and bias (BIAS) for esti-
mates of the recombination
fraction based on presence/
absence data (qualitative) and
on band intensity data (quanti-
tative). Results based on 1,000
simulations for each setting.
n=200

Parametersa MSE×10,000 RMSE×100 SD×100 BIAS×100

µ11 µ12 µ13 σ1 ρ Qual. Quant. Qual. Quant. Qual. Quant. Qual. Quant.

0.5 1.0 1.5 0.05 0.01 0.53 0.26 0.72 0.51 0.72 0.51 0.004 −0.013
0.05 2.43 1.20 1.56 1.09 1.56 1.09 0.023 0.013
0.20 10.51 4.96 3.24 2.23 3.24 2.23 0.032 0.055

0.10 0.01 1.65 0.27 1.28 0.52 0.93 0.52 0.883 −0.018
0.05 3.46 1.32 1.86 1.15 1.71 1.15 0.730 −0.018
0.20 10.65 5.25 3.26 2.29 3.21 2.29 0.583 0.006

0.5 1.2 1.5 0.05 0.01 0.51 0.27 0.71 0.52 0.71 0.52 0.006 −0.004
0.05 2.41 1.20 1.55 1.09 1.55 1.09 −0.056 0.002
0.20 10.31 5.12 3.21 2.26 3.21 2.26 0.136 0.090

0.10 0.01 0.53 0.43 0.73 0.65 0.73 0.65 0.034 −0.004
0.05 2.52 1.77 1.59 1.33 1.59 1.33 0.027 −0.034
0.20 10.13 6.13 3.18 2.48 3.18 2.47 −0.125 −0.146

0.5 1.35 1.5 0.05 0.01 0.50 0.41 0.71 0.64 0.71 0.64 −0.016 −0.036
0.05 2.45 1.74 1.57 1.32 1.57 1.32 0.035 0.053
0.20 10.54 6.29 3.25 2.51 3.24 2.51 0.209 0.055

0.10 0.01 0.55 0.54 0.74 0.73 0.74 0.73 0.022 0.014
0.05 2.59 2.44 1.61 1.56 1.61 1.56 −0.017 −0.051
0.20 10.03 8.86 3.17 2.98 3.16 2.98 0.125 −0.018

0.5 1.45 1.5 0.05 0.01 0.48 0.48 0.69 0.69 0.69 0.69 –0.007 –0.011
0.05 2.53 2.52 1.59 1.59 1.59 1.58 0.112 0.091
0.20 10.06 9.75 3.17 3.12 3.17 3.12 0.055 –0.032

0.10 0.01 0.49 0.49 0.70 0.70 0.70 0.70 0.000 –0.002
0.05 2.69 2.68 1.64 1.64 1.64 1.64 –0.037 –0.048
0.20 10.10 9.97 3.18 3.16 3.18 3.16 0.097 0.050

a Means and variances are the
same for both markers

Table 5 Mean square error
(MSE), root mean square error
(RMSE), standard deviation
(SD) and bias (BIAS) for esti-
mates of the recombination
fraction based on presence/ab-
sence data (qualitative) and on
band intensity data (quantita-
tive). Results based on 1,000
simulations for each setting.
n=500

Parametersa MSE×10,000 RMSE×100 SD×100 BIAS×100

µ11 µ12 µ13 σ1 ρ Qual. Quant. Qual. Quant. Qual. Quant. Qual. Quant.

0.5 1.0 1.5 0.05 0.01 0.20 0.10 0.45 0.31 0.45 0.31 0.019 0.011
0.05 1.08 0.53 1.04 0.73 1.04 0.72 0.020 0.039
0.20 4.44 2.24 2.11 1.50 2.10 1.49 0.103 0.061

0.10 0.01 1.08 0.11 1.04 0.33 0.62 0.33 0.833 –0.015
0.05 1.75 0.50 1.32 0.71 1.09 0.71 0.745 –0.020
0.20 4.52 2.14 2.13 1.46 2.06 1.46 0.527 0.017

0.5 1.2 1.5 0.05 0.01 0.19 0.10 0.44 0.31 0.44 0.31 –0.011 0.001
0.05 0.98 0.47 0.99 0.69 0.99 0.69 –0.069 –0.040
0.20 3.83 1.96 1.96 1.40 1.96 1.40 0.001 –0.026

0.10 0.01 0.20 0.16 0.44 0.39 0.44 0.39 0.046 0.006
0.05 0.99 0.68 0.99 0.82 0.99 0.82 –0.030 –0.049
0.20 4.18 2.59 2.04 1.61 2.04 1.61 0.039 –0.006

0.5 1.35 1.5 0.05 0.01 0.20 0.16 0.45 0.40 0.45 0.40 0.023 0.016
0.05 1.02 0.70 1.01 0.84 1.01 0.84 –0.027 –0.025
0.20 4.19 2.59 2.05 1.61 2.05 1.61 0.050 0.015

0.10 0.01 0.22 0.22 0.47 0.46 0.47 0.46 0.002 –0.001
0.05 1.05 1.01 1.03 1.01 1.03 1.01 –0.004 –0.005
0.20 4.11 3.82 2.03 1.95 2.03 1.95 –0.044 –0.083

0.5 1.45 1.5 0.05 0.01 0.19 0.18 0.43 0.43 0.43 0.43 0.004 0.003
0.05 1.03 1.03 1.01 1.01 1.01 1.01 0.024 0.017
0.20 4.43 4.23 2.10 2.06 2.10 2.06 0.131 0.093

0.10 0.01 0.21 0.21 0.45 0.45 0.45 0.45 0.026 0.024
0.05 0.99 0.99 0.99 0.99 0.99 0.99 0.030 0.026
0.20 3.90 3.90 1.97 1.97 1.97 1.97 –0.050 –0.074

a Means and variances are the
same for both markers
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posite interval mapping (CIM; Zeng 1994) are the condi-
tional genotype probabilities at a putative QTL, given
the flanking markers (Lynch and Walsh 1998). These
probabilities are needed for both the maximum likeli-
hood and the least squares method of estimation (Knapp
et al. 1990; Haley and Knott 1992). Procedures such as
IM and CIM were developed assuming known marker
genotypes. In the case of quantitative markers, the mark-
er genotypes are known only with uncertainty, since we
only have the band intensities, yr, but not the marker ge-
notypes. Thus, to map QTLs using quantitative markers,
we simply need to replace the conditional QTL genotype
probabilities, given the marker genotypes, by the condi-
tional QTL genotype probabilities, given the band inten-
sities, yr. All other computational steps remain essential-
ly unaltered.

Appealing to the Bayes Theorem (Cox and Hinkley
1974), we may compute the a posteriori probabilities of
marker genotypes for the r-th individual, given the band
intensitities yr, as follows:

(14)
Let Q be a random variable denoting the QTL genotype
at the putative QTL. For an F2, Q has three possible real-
ized values. Denote the conditional probability that Q=h,
given the flanking markers as P(Q=h|g1=i, g2=j) (i, j,
h=1, 2, 3). These probabilities may be computed assum-
ing either complete interference (Knapp et al. 1990), or
absence of interference (Haley and Knott 1992), as in
standard QTL mapping by IM or CIM. Then, the condi-
tional probability of the QTL genotype, given yr is,

(15)

The only necessary modification of standard QTL map-
ping procedures is to replace P(Q=h|g1=i, g2=j), which is
used in case of known marker genotypes, by P(Q=h|yr;
θ) in (15). To employ this approach in practice, a good
estimate of θ as well as a measurement of yr for each in-
dividual of the population to be mapped are required.

Genotyping AFLP markers

There is currently much interest in co-dominant scoring
of AFLP markers, and some specific software is avail-
able for this purpose, e.g. AFLP-Quantar by Keygene
(www.keygene.com). Recently, Piepho and Koch (2000)
have presented a mixture approach for co-dominant scor-
ing, which fits a normal mixture to the band intensities
and then computes a posteriori probabilities of geno-
types, given the band intensities. This approach is map-
independent, since it only uses information on the mark-
er to be scored. If a map is available, information from
flanking markers can be used to improve scoring. Pro-
vided that both the markers to be scored as well as the
flanking markers are AFLPs with measured band intensi-
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ties, Bayes Theorem may be applied in a straightforward
manner to compute conditional probabilities for the
marker to be scored.

Consider an F2 population derived from an F1 plant
M1M2M3/m1m2m3. Let ρ1 and ρ2 denote the recombina-
tion factions between markers 1 and 2 and between
markers 2 and 3, respectively. Assume that marker 2 is
flanked by marker 1 to the left and marker 3 to the right.
Further, assume that for the r-th plant we have a quanti-
tative measurement at each marker position k (k=1, 2, 3).
Denote this measurement as ykr. Based on yr=(y1r, y2r,
y3r) we want to infer the most-likely genotype at k=2, ex-
ploiting the information both at the marker itself and at
the flanking markers k=1 and k=3. Let gk be a discrete
random variable for the k-th marker locus, which denotes
the genotype at that locus. The random variable can take
values 1, 2 and 3 corresponding to the three possible ge-
notypes at the locus, as described in Table 1. Denote the
a priori genotype probabilities as

πijh(ρ1, ρ2)=P(g1=i, g2=j, g3=h) (i, j, h=1, 2, 3). (16)

As indicated by the notation, these probabilities depend
on the recombination fractions ρ1 and ρ2. Explicit formu-
lae may be found, e.g., in van Ooijen (1992). Condition-
ally on the marker genotype gk=s, band intensities at the
k-th marker are assumed to follow a normal distribution
with a mean µks and a variance σ2

k. Thus, the marginal
distribution of yr=(y1r, y2r, y3r) is a mixture of 27 trivari-
ate normal distributions:

(17)

where

θ=[ρ1, ρ2, (µks), (σ2
k)] (k, s=1, ..., 3). (18)

According to the Bayes Theorem (Cox and Hinkley
1974) the posterior probability of the genotype class
membership of an individual at marker locus k=2, given
its phenotypic value at the three markers (yr), is

(19)

This probability can be used for finding the most likely
genotypes of AFLP markers, given band intensities at
the marker in question and the two flanking markers.
Again, practical use requires good estimates of the pa-
rameters θ. For example, means and variances of the
normal mixtures can be estimated using the method de-
scribed in Piepho and Koch (2000), while recombination
fractions are estimated using the two-point method in the
present paper.

To evaluate the merit of co-dominant scoring, we may
compute the correct allocation rate (CAR), i.e. the proba-
bility that a randomly drawn individual is classified 
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correctly with respect to g2. Following Basford and
McLachlan (1985) and McLachlan and Basford (1988)
we can estimate the CAR by

(20)

where τ̂ jr is the estimator of τjr.

Final remarks

This paper has presented a method for two-point analysis
that exploits quantitative information on dominant mark-
ers such as AFLPs. The simulations have shown that it
will often be beneficial to exploit such information if it is
available. In practice, the gain in efficiency has to be bal-
anced against the cost of obtaining the quantitative data.

A referee suggested that there may be a break point at
which dominant and co-dominant scoring might be
equally efficient. The simulation results suggest that both
methods become increasingly similar as the distance be-
tween means for the heterozygous and the dominant ho-
mozygous genotype diminishes. It does not seem, how-
ever, that dominant scoring may outperform co-dominant
scoring, even if the overlap of the distributions underly-
ing the quantitative variable is substantial. A probable
reason is that dominant scoring always entails a loss of
information, even if co-dominant scoring is less than
perfect. Clearly, if co-dominant scoring is in error, then
dominant scoring cannot be expected to fare any better.
If, by contrast, the component distributions are very well
separated, co-dominant scoring could even be done by
eye with minimal classification error. In this situation,
too, codominant scoring must be more informative. In
summary, the more clearly separated are the means for
the dominant homozygous and the heterozygous plants,
the more pronounced is the gain in efficiency by co-
dominant scoring. If separation is poor, then the gain is
small or negligible. Simulations indicate that nothing is
lost by trying to exploit quantitative information.

It is well known that the information content of domi-
nant markers is especially low when dominant alleles are
in repulsion linkage (Liu et al. 1998, p 193). Also, re-
combination-fraction estimates may be severely biased
in this case, mainly due to the low frequency of the dou-
ble-recessive class (Knapp et al. 1995). Therefore, it is to
be expected that the gain by co-dominant scoring is even
more pronounced for markers in repulusion than for
markers in coupling. One reaction to the problem of the
low-information content of dominant markers in repul-
sion has been to construct two separate maps. This ap-
proach exploits the fact that markers can be split into
two groups of approximately equal size, with markers
within each group linked in coupling. It is difficult to
make the link between the two maps, however, since the
repulsion linkage phase will be a barrier (Liu et al. 1998,
p 193). For this reason, it is generally accepted that co-

dominant markers are needed to anchor dominant mark-
ers. With the present method, it is possible in principle to
construct a single map from all dominant markers, so the
problem can potentially be resolved without resorting to
anchoring. It would be interesting to compare the present
method with map construction using dominant marker
information in combination with anchoring markers.
This question will be addressed in future work. Also
note that extension of the present method to include co-
dominant markers is straightforward, so anchoring can
be integrated in the proposed method if desired.
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